90123456789012

NC.4.OA.3 Find all factor pairs for whole numbers up to and including 50 to:

n

8

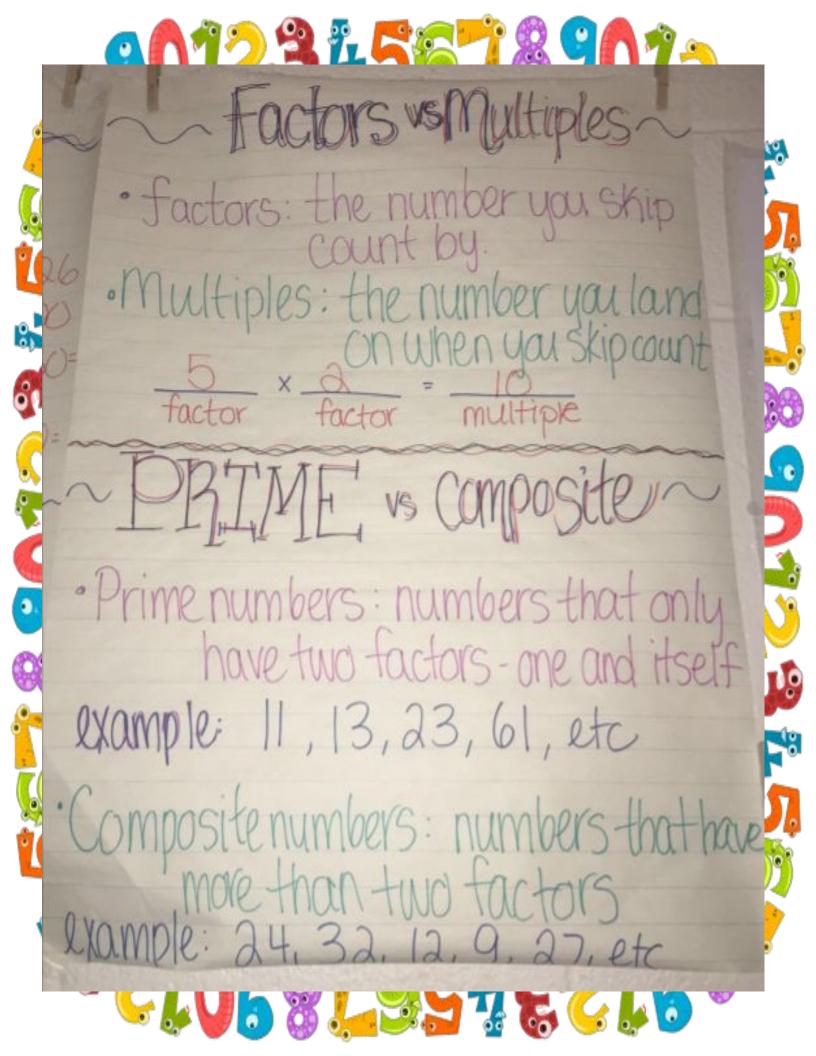
817

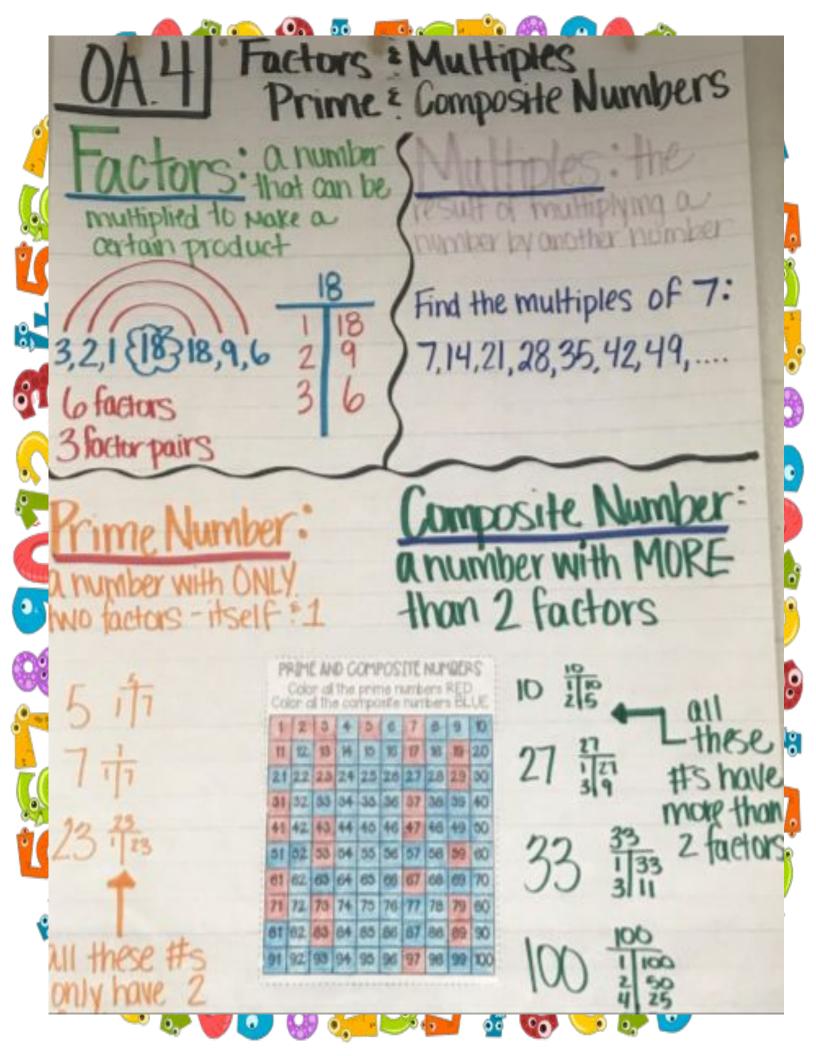
9

0

3

- Recognize that a whole number is a multiple of each of its factors.
- Determine whether a given whole number is a multiple of a given one-digit number.


119


- 6

CJ.

- Determine if the number is prime or composite.
- I can find all factor pairs for a whole number between 1 and 100.
- I can show how a whole number is a multiple of each of its factors.
- I can determine if a whole number between 1 and
 100 is a multiple of a particular one digit number.
- I can determine the numbers between 1-100 that are prime.
- I can determine the numbers between 1-100 that are composite.

Examples 11 M 14 Man MM MM M array: A way of displaying MIMIM 1 X 6 objects in a row or ax3 000000 column. 000 000 Arrays 611 / Factor Pair factor: The numbers that are multiplied together to give a product. Factors factor pairs: Numbers that when The factor pairs of 6 multiplied together Factors give a certain product are land 6 2 and 3. Generalize: To make a general 1x6=6 and 6 x1=6 statement. 2x3=6 and 3xa=6 3x2=6 and 2x3=6 * You generally start dividing the whole 4 is not a factor number by 1, then divide the whole 5 is not a factor number by 2, and so on. bx1=6 and 1x6=6 Things to Remember for finding factors: ORows go across and columns go down Quinen factor pairs start repeating, you can generalize, that all the factors of a number are found. 3) The number of rows and the number of counters in each row one factors of the total number of counters. @ Remember the factors of a number always include I and the number

Definitions

Examples

array: A way of displaying objects in a row or column

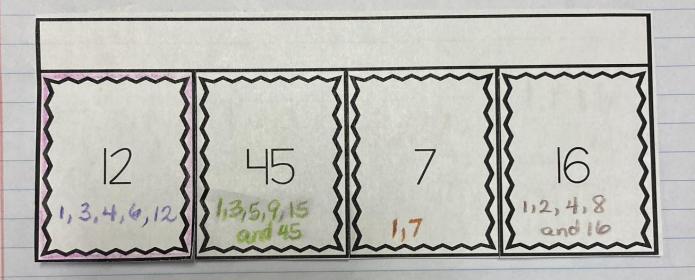
factor: The numbers that are multiplied together to give a product.

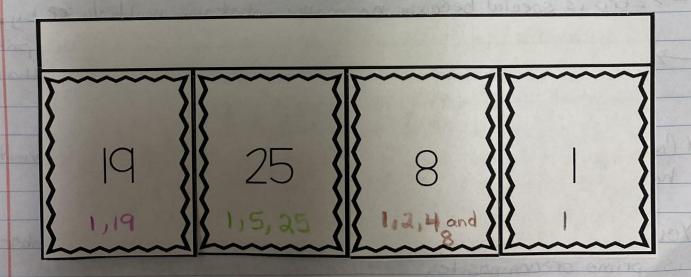
factor pairs'. Numbers that when multiplied together
give a certain product.

Generalize: to make a general statement

Orrays	X6	00000 0000 0x1	MU W AX 3 000 000	10000 10000 10000 10000
				00

2 x 3 = 6 Product
Factors


The factor pairs for 6 are and 6 and 3.


1 x 6=6 and 6 x 1=6 2 x 3=6 and 3 x 2=6 3 x 2=6 and 2 x 3=6 4 is not a factor 5 is not a factor 6 x 1=6 and 1 x 6=6

Factors

The numbers that are multiplied together to give a product. (Factors listed on top of the flap)

Factor pairs: Numbers that when multiplied together give a certain product (Factor pairs under)

* Remember: Factors begin with I and end with that given number see examples on top of flap.

The numbers that are multiplied together to give a product. (Factors listed on top of the flap)

Factor pairs: Numbers that when multiplied together or pairs under)

1x12 2x6 3x4

1×7

* Remember: Factors begin with I and end with that given number. See examples on top of flap.

Definitions Examples 7 is a prime number Factors 1,23 Prime number: A whole number greater than I that has M MYMMMM exactly two factors, itself and 1. 1x23 7 only has two factors, itself and Trime or Composite Composite number. A whole number greater than I 8 is a composite number. 00000000 With more than two factors. 0000 The number (1) cannot be a prime number. The factors of 8 are 1, 2, 4 and 8 06 512 00000 • It is not greater than 1. (x)
• It does not have 2 factors. 2x5

1,2,5, and 10.

PRIME

Prime numbers: A whole number greater than I that has exactly two factors, 1x7= 1tself and 1. I Example: 7(prime): land 7 are factors 8

factors, it self and 1.

1		2	3	4	,5	6	7	8	9	10
1	1	12	13	14	15	16	17	18	19	20
2	1	22	25	24	25	26	27	28	29	30
3	1	32	33	34	35	36	37	38	39	40
	1	42	43	44	45	46	47	48	49	50
5	1	52	53	54	55	56	57	58	59	60
- 6)1	62	63	64	65	66	67	68	69	70
$-\frac{1}{2}$	71	72	13	.74	75	76	77	78	79	80
	31	82	83	84	85	86	87	88	89	90 -
	91	92	93	94	95	96	97	98	99	100

Special Notes about prime numbers:

> Zero is special because no matter what you multiply by:

zero the product is always zero; so it is not prime.

> One can't be prime because it is not greater than

I and it does not have two factors.

* Computers use prime #15 like a secret code. It makes information hard to unscramble.

You can use arrays or multiplication to see if a number is prime or composite.

COMPOSITE

Composite Number: A cohole number greater
than I with more than two factors.

Example: 8(composite)
1,2,4 and 8 are factors

00	0		
	0		
0000		0811	
0000	00	0	
2x4	00	00	
	00	0	
	4x2		

1	2	3	4	5	6	7	8	9	10
11	12	13	1	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46,	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83.	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

The factors of 8 are 1,2,4, and 8

Special Notes about composite numbers:

-> Zero is special because no matter what you multiply
by zero the product is always zero, so it is not composit.

-> one can't be prome because it is not greater than

I and it does not have two factors.

Multiple: The product of a given whole number and any non-zero whole number. Factor: Numbers that when multiplied together give a product. The factors of 24 are 1,2,3,4,6,8,12, and 24. 1) 1224=24 24 is amultiple of 34x1=24 (2=24 1,2,3,4,6,8,12 and 24. 3x 8=24

8x3=24

GET TO IT.

Utiples

Multiples: The product of a given whole number and only non-zero whole number. (factor)

Example: 24 The factors of 24 are 1,2,3,4,6,8,12, and 24. 24 is a multiple of 1, 2, 3, 4, 6, 8, 12 and 24:

2: 2, 4, 6, 8, 10, 12...

x1 xa x3 x4 x5 5: 5, 10, 15, 20, 25...

X2 X3 X4 A5 XI 10: 10, 20, 30, 40, 50...

x1 x2 x3 x4 x5 12: 12, 24, 36, 48, 60...

x1 x2 x3 x4 25: 25, 50, 75, 100...

x1 x2 x3 x4 50: 50, 100, 150, 200...

24×1 (1) xa4_ (a)xIa 12x2 (3)x8

*The factors and a whole number gives the product of a givenwhole number.

In the example above, all multiplication equations equal the given number 24. So 24 isa multiple of those humbers.

* To find multiples, read the problem to determine how many multiples the question asks for. See example below.

6 Find 5 multiples of 6. Use multiplication. 6,12,18,24,30 6x5=30

6x1=6

6×2=12

6+3=18 6×4=24 * You can skip count to find multiples of a number:

